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Abstract. If Bitcoin becomes the prevalent payment system on the Inter-
net, crime fighters will join forces with regulators and enforce blacklisting
of transaction prefixes at the parties who offer real products and services
in exchange for bitcoin. Blacklisted bitcoins will be hard to spend and
therefore less liquid and less valuable. This requires every recipient of
Bitcoin payments not only to check all incoming transactions for possible
blacklistings, but also to assess the risk of a transaction being blacklisted
in the future. We elaborate this scenario, specify a risk model, devise
a prediction approach using public knowledge, and present preliminary
results using data from selected known thefts. We discuss the implications
on markets where bitcoins are traded and critically revisit Bitcoin’s ability
to serve as a unit of account.

1 Introduction

Whenever a merchant receives a 100-dollar note, she is well advised to carefully
check whether it is authentic. Bitcoin is a decentralized cryptographic currency
with the ambition to take over the role of dollar notes at least in the domain
of online transactions. As bitcoins1 are mere references in a public ledger, the
Bitcoin equivalent to checking the authenticity of conventional banknotes would
be to rule out inconsistencies in the global system state which could nullify
an incoming payment. The recommended and well-known defense against the
so-called double spending risk is patience. The merchant has to wait until a
transaction is sealed deep enough in the block chain to make revisions extremely
costly, and hence unlikely [17]. But sooner or later, patience will not be enough.

The popularity of Bitcoin among criminals [13], allegedly for its anonymity
and loose to absent regulation, has called for new approaches to fighting financial
crime committed in or settled through Bitcoin. A promising strategy is to blacklist
transaction prefixes to invalidate assets originating from criminal proceeds [25].
This strategy is effective and practical because the blacklists can be enforced at
the services accepting bitcoins. Those are not decentralized and therefore cannot
evade law enforcement in their jurisdiction of residence; and, by extension of
mutual legal assistance, the set of internationally recognized provisions for the
fight against financial crime. In fact, the ability to enforce such a blacklisting
policy thwarts the very idea of a decentralized currency by projecting power of

1 Convention: We capitalize Bitcoin when referring to the name of the system and use
lower case for the monetary unit (like dollar, euro). BTC is shorthand for the unit.
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the legal system into Bitcoin. This is why blacklisting practices are controversial
among Bitcoin enthusiasts [6]. We leave this philosophical debate aside and
concentrate on the effect of blacklisting policies on transactions in general. In
practice, blacklisting is reality in Bitcoin [10] and new ventures seek to offer
whitelisting services with similar effect [16].

This paper contemplates a future of Bitcoin where blacklisting of known bad
transaction prefixes is common practice and the resulting blacklists are observed
by all relevant parties where bitcoins can be spent. As a result, end users receiving
payments in Bitcoin must screen incoming transactions as well. We can safely
assume that suitable services and APIs will be offered by third parties.

However, even when payments appear benign, recipients can never be certain
if a prefix of their incoming transactions will be blacklisted in the future. They
have to accept a risk of invalidation while holding bitcoin. This specific risk is
probably small compared to all other risks involved with Bitcoin for the time
being, but the proportions may change as the currency gains popularity. Unlike
other risks, this risk is idiosyncratic for the transaction history of the specific
incoming transaction. For example, a transaction that forwards freshly mined
bitcoins (so-called coinbase transactions) has less likely been involved in a crime
than a transaction consisting of bitcoins that have changed ownership more
often. This gives raise to the idea of predicting the risk of blacklisting to valuate
incoming transactions and manage the spending risk.

This paper sets out to specify a risk model and outline a prediction ap-
proach using public knowledge from the Bitcoin block chain. We also present
preliminary results for selected known thefts; although the low number of events
and heterogeneity of data prevent us from actually calibrating and running the
model. As an equally important contribution, we discuss the implications on the
future of Bitcoin. The paper is organized as follows. Section 2 recalls essential
features of the Bitcoin system and ecosystem with special emphasis on risks in
general. Section 3 develops a model for the specific risk of transaction blacklisting.
Section 4 presents our empirical findings, and Section 5 discusses implications.
The paper concludes with an outlook on future work (Section 6).

2 Background

2.1 Bitcoin and the Real World

To reason about Bitcoin and its relation with the real world, it is useful to
introduce some terminology. Our conceptual model in Figure 1 distinguishes the
core Bitcoin system from a surrounding ecosystem. The core system consists
of a protocol, implicitly specified by the reference implementation of the client
software, and data representing the global consensus system state. This state is
stored in the public block chain and continuously being updated by all clients
participating in the Bitcoin peer-to-peer network. The core system is decentralized
and designed with the aim to withhold control by central entities.

The Bitcoin ecosystem is the set of market operators leveraging the Bitcoin
system. It includes Bitcoin-specific financial intermediaries, such as exchanges,
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Fig. 1. Bitcoin’s relation to the real world

mining pools, remote wallets, or transaction anonymizers. Some intermediaries
are necessary to make Bitcoin usable as a global Internet currency, but unlike the
core system, Bitcoin intermediaries are not decentralized. To avoid single points
of failure and to discipline the intermediaries, competition between intermediaries
offering substitutable services is desired and required.

The outer layers in Figure 1 reflect the conventional separation of the financial
from the real sector. As some Bitcoin intermediaries, notably exchanges, interface
with conventional financial intermediaries, notably payment systems, we can
depict the financial sector as another layer shielding Bitcoin from the real world.
The intersection of all layers at the top of the figure symbolizes the possibility
to skip layers. For example, the externality of cycles burned to reach consensus
via proof-of-work materializes in energy consumption and heat production in the
real world without necessarily involving the layers in between [3].

2.2 Implications for Crime Fighters

The description in this section draws on our prior work [25]. Recall that markets
in the real economy include legal and illegal activities alike. As criminals use the
financial sector (and Bitcoin) to commit crimes and to launder criminal revenues,
law enforcement has to take precautions. Fighting crime in the conventional
financial sector lasts on the Know-Your-Customer (KYC) principle. The prin-
ciple mandates financial intermediaries to verify the identity of clients before
doing business with them. KYC was tightened in the US Patriot Act in order to
strengthen efforts of anti-money laundering (AML) and combating the financing
of terrorism (CFT). Many jurisdiction followed this US initiative. However, KYC
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is only one cornerstone. It must be complemented by risk assessment, monitoring,
reporting and enforcement. Once identities are established via KYC, they become
the identifiers enabling all downstream activities. Standard procedures include
suspicious activity reports filed with financial intelligence units (FIUs), or auto-
matic cross-checks against blacklists maintained by financial crime fighters, such
as the US Office of Foreign Assets Control. In simple terms, fighting financial
crime in conventional payment systems relies on known identities and does not
require a full picture of all transactions.

Bitcoin, by contrast, is designed with pseudonymous identities. Account
numbers are public keys of a digital signature system. Account ownership is
established by knowing the corresponding private key. Everyone with a computer
can create valid key pairs from large random numbers and thus open one or
many Bitcoin accounts. Although the relation between Bitcoin accounts and
civil identities of their owners is a priori unknown, Bitcoin transactions are
not anonymous. A simple abstraction for Bitcoin is to think of it as a public
distributed ledger that records all transactions between valid Bitcoin accounts. In
short, fighting financial crime in Bitcoin means dealing with imperfect knowledge
of identities, but may exploit perfect knowledge of all transactions.

2.3 Risks of Holding Bitcoin

Individuals or organizations holding bitcoins are faced with several types of
risks, some of which can be managed by taking appropriate precautions. Most
prominently, there is exchange rate risk. Compared to ordinary currencies, Bitcoin
is still very volatile. Within just four weeks in fall 2013, Bitcoin soared as the
exchange rate increased from 200 USD to 800 USD, i. e., by 400 %. On the contrary,
when the Bitcoin exchange Mt. Gox was hacked in June 2011, the perpetrators
caused the exchange rate to drop from 17,50 USD to just a single cent [18]. (But
the exchange rate recovered minutes after the event.) The uncertainty of the
exchange rate is one of many factors that might impede businesses accepting
bitcoin. A mitigation strategy is to regularly convert bitcoins into local currency
and keep only a small transaction budget at risk. Commercial payment providers,
for instance BitPay [1], offer services to automate this process.

Closely related to exchange risk is the risk of a systemic Bitcoin failure. This
means that a catastrophic event dries out the market and lets the exchange rate
plummet close to zero. One reason could be a major government intervention.
Although no government can stop Bitcoin from existing, a coordinated action of
large countries can nevertheless force the currency into the underground. While
some jurisdictions appear to tolerate Bitcoin, others, such as Thailand [20], are
more reserved. Moreover, any glitch in the implementation of the Bitcoin protocol
could easily cause a failure, too. Namecoin, a special-purpose Bitcoin derivate,
was affected by such a failure recently. The attempt to recover it was still ongoing
at the time of writing [7]. Obviously, this kind of risk can only be managed by
not holding more bitcoins than one can afford to lose.

Whenever users deal with intermediaries, they are exposed to counterparty risk.
There are many reported cases where Bitcoin intermediaries closed their business
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with their clients’ deposits as loot. Whether the root causes were fraudulent
motives or plain bankruptcy is of secondary interest in the absence of effective
means of fund recovery. Moore and Christin [24] have empirically analyzed factors
behind exchange failures and calibrated a prediction model for such events.

The risks described above affect all users (or all users within a large group)
alike, but there are also risks idiosyncratic to users. First, users face the risk
of making mistakes when sending transactions. As Bitcoin transactions are
irreversible, typos in the transaction amount require the recipient’s active collab-
oration to undo that error. Fool-proof client implementations are necessary to
mitigate the risk of making mistakes.

Careless users may lose the private keys, which are required to spend their
bitcoins, e. g., due to a failure of the storage medium of their wallet. Nobody
really knows to which extent users have suffered losses so far. Ron and Shamir
identify large amounts of dormant coins, i. e., bitcoins which have not been used
for a long time, in their transaction graph analysis and conjecture that these
might be lost coins [28]. Regular backups of private keys reduce this risk.

Users may not only lose private keys by improvidence, but may also become
victims of theft. Many Bitcoin users do not keep their private keys in their own
domain of trust. Instead, they entrust online service providers with managing
their wallets. Such providers are hacked quite regularly, which usually means
their customers lose everything. Recently, the wallet provider “inputs.io” has
been compromised and the bitcoin equivalent of 1.2 million USD has been stolen
[21]. Replacing online services by personal devices is not necessarily a solution.
For instance, wallets managed with Android devices have been found vulnerable
to a weakness of Android’s random number generator [2]. Hence, paying close
attention to security is critical to mitigate the risk of theft.

Another risk that received considerable attention is double-spending [3, 17,
for example]. Bitcoin’s nature of a decentralized peer-to-peer system relying on
proof-of-work to maintain the integrity of the global state puts individual clients
at the risk of believing in a transaction that will be invalidated in the future.
The specific risk of double-spending declines exponentially with the number of
blocks after the inclusion of the transaction [26]. Hence, while double-spendings
occur regularly [8], some patience when accepting Bitcoin payments is enough to
avoid falling for it.

Similar to double-spending, blacklisting is another risk of receiving apparently
valid bitcoins at one point in time, which become invalid at another. Although
not extensively used these days, if blacklisting becomes common practice, it is in
the users’ best interest to account for the risk of blacklisting whenever accepting
a Bitcoin payment. What is special about this risk is that whether bitcoins are
blacklisted or not depends on their transaction history, i. e., on whether those
transactions preceding the current one were involved in a crime. This calls for risk
scoring based on the public information contained in the block chain. Although
blacklisting has been a topic in the Bitcoin community for some time, we are not
aware of any attempts to set up such a scoring model.
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The collection of risks provided in this section is by no means exhaustive.
More subtle risks exist as well, such as losing financial privacy if the association
between a Bitcoin address and its owner becomes public. This paper focuses on
the blacklisting risk specifically.

3 A Risk Arrival Model for Blacklisting Events

3.1 Blacklisting Policies: Poison and Haircut

To tackle the quantification of the risk of transaction blacklisting, it is important to
specify what the consequences of blacklisting can be. Transactions are blacklisted
with a certain probability if they are involved in a crime. Typical Bitcoin crimes
include theft from popular online wallet providers or illegally earned proceeds
from blackmailing, e. g., with ransomware such as CryptoLocker [15]. The goal
of blacklists is to render the criminals’ bitcoins useless, thereby lowering the
incentives for this criminal activity. To achieve this end, governments could
mandate all legitimate businesses not to accept transactions directly associated
with blacklisted transactions.

There are several problems with this approach. First and foremost, criminals
can create as many identities as they want [14]. Hence, they can send their dirty
bitcoins through several fake addresses. They could repeat this procedure until it
appears to a ingenuous observer that there is no connection to the criminal source.
To avoid this, blacklisting has to propagate through the transaction graph to
punish anyone, both fake identities of criminals and ordinary users, for accepting
blacklisted bitcoins. Honest users can avoid undue punishment by obeying the
blacklist preemptively.

Unfortunately, there will be a certain timespan between the point in time at
which an illegal transaction takes place and the point in time at which it is added
to the blacklist. Thus, honest users may accept a dirty bitcoin despite their best
efforts to comply with the blacklist. These users, not knowing that they have
accepted a dirty bitcoin, might combine three small amounts of bitcoins A1, A2
and A3 to create a large transaction B. With the propagation mechanism in
place, B would also be affected by blacklisting if only one of its input transactions
A1, A2 or A3 is dirty.

Consequently, it is important to specify how exactly B would be affected. Two
basic blacklisting policies are conceivable. In the first, which we call “poison”, B
would be invalidated just as any other blacklisted coin. The poison policy implies
that every transaction is invalidated that has at least one dirty predecessor,
no matter how many generations above. Note that the propagation works on
the level of transactions (not addresses) and requires the recipient to act. This
prevents that saboteurs can destroy other people’s bitcoin wealth by routing a
blacklisted transaction to their publicly known address.

The second, less drastic policy is one we call “haircut”. Instead of invalidating
a transaction entirely, it is devalued proportionally to the amount of blacklisted
bitcoins in its inputs, again applied recursively. In the example above, if the
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Fig. 2. Timing model of transaction blacklisting (BL) with different policies

three transactions A1, A2 and A3 were all worth one bitcoin and one of them
was blacklisted, transaction B would be treated being worth 2 BTC (although
nominally, in the block chain, it would be worth 3 BTC). It is easy to see how
this policy propagates through the transaction graph.

Figure 2 shows an advanced transaction graph example of how the two basic
policies affect transaction values. Nodes represent transactions, whereas arrows
represent the flow of value between them (i. e., an output of a former transaction
is used as an input in the successive transaction). The color of a node represents
the state of blacklisting, where white represents clean coins and black blacklisted
coins. In the poison scenario, an initial theft of 7 BTC leads to a total loss of 20
BTC, as blacklisted coins were combined with clean coins and thereby change
their state. In the case of the haircut policy, different colors of grey illustrate
the amount of a transactions devaluation. As the stolen 7 BTC are repeatedly
combined with clean coins, the share of blacklisted value decreases (and the color
gets brighter). In contrast to the poison scenario, the total amount of blacklisted
value stays the same.

Of course, more advanced policies that look deeper into transactions are
conceivable. Imagine a “FIFO” policy, where the order of the inputs determines
which outputs are affected by blacklisting. If a transaction has two inputs worth
1 BTC and only the second input originates from a blacklisted transaction, the
first output(s) will be considered “clean” until they add up to a value of 1 BTC
and the remaining outputs will be partially or fully invalidated. Note that as
a result, such granular blacklisting policies may make the internal structure of
transactions subject for negotiations between sending and receiving parties.

3.2 Risk Arrival and Impact Analysis

As discussed, blacklisting exposes all users to the risk of accepting a bitcoin
which is blacklisted in the future. Rational users desire to keep this risk small.
In particular, at some point in time, a user will be presented with a transaction
created by another user and he will have to decide whether or not to accept it; or,
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more precisely, how much the bitcoins being transferred are worth to him. The
user reduces the nominal value, i. e., the BTC amount specified in the transaction,
by an appropriate risk premium reflecting the risk of blacklisting.

This risk is idiosyncratic for the transaction as it depends on the history of all
inputs. For simplicity, we consider only one input noting that the generalization
to multiple inputs is straightforward if the blacklisting policy is known. A rational
user will analyze the history using suitable predictors. By observing previous
thefts and the traces criminals leave behind in the block chain, he could identify
characteristic patterns and search for these patterns in the given history. This
information could be used to estimate the expected loss associated with accepting
the transaction at face value.

For both policies, poison and haircut, users must first estimate the probability
that a transaction will be affected by blacklisting as a function of time. Second,
users must estimate how long they keep (parts of) this transaction in their own
accounts. This is non-trivial as users may prioritize spending of risky coins or
spend bitcoins faster in general, which has monetary implications not further
detailed here. Third, they have to estimate their loss in case of blacklisting. This
depends on the policy.

For the poison policy, the third part is straightforward. As all affected bitcoins
are void, users multiply the blacklisting probability with the transaction value.
Things are more complicated with a haircut policy. But the haircut policy also
has advantages. Imagine the poison policy was in place and a user has accepted a
transaction. When he combines this transaction with others, e. g., to consolidate
his funds in cold storage, he also puts his other funds at risk. In such a policy,
combining transactions would increase risk, effectively lowering the value. As a
result, users would avoid doing so if not absolutely necessary. With the haircut
policy, by contrast, the total value at risk does not change when transactions are
combined.

Transaction histories grow substantially over time. Apart from technical
challenges with analyzing such histories (e. g., finding efficient algorithms and
data structures), this also causes hard-to-calculate risk. There will always be
a very small but positive probability of very old incidents becoming generally
known. Especially with a poison policy, this could affect very large numbers of
transactions potentially causing systemic instability of the currency. Hence, some
form of statutory period after which no blacklisting is done seems reasonable.

4 Prediction Approach

4.1 Model and Data

The heart of any risk scoring model is the set of predictors that separates the
dangerous coins from the harmless. To test such predictors, data from real thefts
is needed in order to distinguish normal from criminal behavior. While law
enforcement agencies might have a comprehensive list of incidents at their hands,
the only source of public information we are aware of is a list of major thefts
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and losses that happened from 2011 until today (November 2013). The list is
maintained by users of the “Bitcoin Forum” [4]. There are a number of aspects
limiting the applicability of this dataset:

– The list contains only large thefts, between 922 and 263,024 BTC.
– Only few thefts include a list of the relevant transactions.
– It is difficult to determine when a theft was “officially” announced, yet the

exact point in time is needed to determine when official blacklisting could
have taken place.

Out of nine thefts that contain a list of relevant transaction, we can only as-
sign a concrete blacklisting timestamp to six incidents. We used the time of
first announcement in the Bitcoin forum as the assumed time of blacklisting.
Furthermore, only three of these thefts show block chain activity between the
theft and the blacklisting timestamp, rendering the other three useless for our
purposes (cf. Table 1). Nonetheless, we show exemplary results from our attempts
to evaluate our predictors using the information from these three incidents.

Table 1. List of known incidents with transaction data

Incident Severity Reporting Time Coins used

Allinvain Theft 25000 BTC 2011-06-13 20:47 yes
Linode Hack 46653 BTC 2012-03-01 21:43 yes
Betcoin Theft 3172 BTC 2012-04-13 12:19 no
May 2012 Bitcoinica Hack 18548 BTC 2012-05-11 13:16 no
Bitfloor Theft 24086 BTC 2012-09-04 17:08 yes
Cdecker Theft 9222 BTC 2012-09-28 08:10 no
Mass MyBitcoin Theft 4019 BTC unclear –
2012 Trojan 3500 BTC unavailable –
Bitcoin Syndicate Theft 1852 BTC unavailable –

4.2 Candidate Predictors

We briefly discuss a few potential predictors for our risk model. First of all,
predictors need to be powerful and efficiently measurable. As they are based on
public data, criminals could try to outsmart them, hence predictors should ideally
be hard to manipulate. Our list includes public information that can be gathered
from the block chain only. It is conceivable to include other public information,
such as references to Bitcoin addresses on the web. If the risk prediction is offered
as a service, it is also possible to include private information, for instance collected
by exchanges and other intermediaries; and enriched with behavioral profiles
acquired from social media or search engines. It is unclear if such information
is of any help to detect indications of criminal activity. Very speculatively, a
potentially powerful predictor using semi-public information would be whether
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transaction prefixes have been seen at exit nodes of the Tor network. If this
information helps, one could even pay the operators of exit nodes for sharing
such knowledge. But such ideas are clearly out of scope of our initial prediction
attempts.

In the following we describe the predictors considered in this study.

Transaction Value Ordinary users can be expected to transfer ordinary
amounts of bitcoins between addresses for ordinary purposes such as chang-
ing bitcoins for local currency at a Bitcoin exchange. The number of bitcoins
being transferred will be rather small. Any activity involving very large sums of
Bitcoins would be suspicious, e.g., because a criminal hacked an exchange and
exfiltrated all bitcoins at once. Hence, a straightforward indicator is to observe
transaction volumes and to pay close attention to outliers from an expected
distribution as they may stem from a major theft.

Obfuscation Patterns If a thief is clever enough to steal a large amount of
bitcoins, he is probably also clever enough to avoid leaving obvious traces of
his crime behind. Instead of simply combining his entire haul to a huge lump
sum to spend on a Ferrari, he may also use carefully designed obfuscation
patterns, possibly involving numerous fake identities, to stop law enforcement
from tracing him. Assuming that those taking on such efforts are more likely
involved in criminal activities than others, risk scoring models could search for
typical obfuscation strategies as indicators of blacklisting risk. Examples of such
patterns have been observed in the Bitcoin transaction graph before, e.g., in the
context of analyzing Bitcoin mixing services, which make extensive use of peeling
chains [25]. Other studies also identified various characteristic patterns used by
larger organizations in the Bitcoin ecosystem. Most importantly, these patterns
involve aggregations, foldings (i. e., combining blacklisted transactions with clear
transactions), splits and also peeling chains [22]. Hence, peeling chains are not
necessarily associated with Bitcoin mixing but may still increase the risk.

Frequency of Usage A thief trying to obfuscate the origin of his bitcoins
may construct a complex web of transactions between multiple fake addresses
to make others believe these Bitcoins were involved in ordinary business. What
a thief might also want is to launder stolen coins as soon as possible. As he
knows his bitcoins were involved in a crime, he is fully aware of the blacklisting
risk and holding them for a long time increases his risk of loss. Hence, the
thief must construct his fake transactions fast, resulting in a short time span
between transactions involving these coins. This motivates measuring transaction
frequency to use it is an indicator of risk. Whenever frequency increases above
average values, there are reasons for suspicion.

Change Addresses and Multi-Input Transactions The predictors pre-
sented so far make use of characteristics of the transaction graph, but do not
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take the addresses associated with the transactions into account. Heuristics such
as the detection of change addresses [22] or the combination of addresses from
multi-input transactions [27], which are likely to belong to the same user, can
detect connections between apparently unrelated transactions. This allows to
possibly link public keys of transaction prefixes to other blacklisted transactions.
Furthermore, it can provide evidence whether obfuscation patterns or a high
frequency stem from a natural origin or are constructed by a single entity.

Coinbase Transactions Coinbase transactions are a special type of transaction
of which there is one per block in the block chain. These transactions do not
have inputs, i. e., they create new bitcoins without using up the bitcoins from
other transactions. At the moment, their value is equal to 25 bitcoins plus the
sum of all transaction fees associated with the other transactions in the block.
The primary purpose of coinbase transactions is to provide an incentive for users
to participate in the creation of proof of work, which is necessary to ensure
manipulation resistance of the global state. Also, they solve the problem of
bootstrapping the network [9]. Because coinbase transaction have no history
attached to them, their risk of being involved in a theft if obviously very low –
except for the case in which a thief is able to control a miner or mining pool
directly and thus the coinbase transaction itself would be blacklisted. If the thief
colludes with a miner to launder his coins through large transaction fees, one
could apply the blacklisting policy also to transaction fees – where the haircut
policy seems to be the more appropriate policy as it leaves the fixed reward of
the coinbase transaction unaffected. To measure the portion of “clean” coins,
we compare the value of coinbase transactions Ci(t) to the value of all Vi(t)
transaction i steps away from the transaction of interest t, and then sum up the
individual values for each i in a degressive fashion. This reduces the influence of
transactions further away. One can limit i to i = 10, as larger values for i will
influence the score only marginally:

X(t) =

10∑
i=1

1

2(i−1)
· Ci(t)

Vi(t)
.

Larger values of X(t) imply a larger amount of value stemming from coinbase
transactions and thus reduce the risk of blacklisting.

4.3 Preliminary Results

Although not adequate to calibrate our model, we calculate indicator scores for
all three thefts and compare the results to a control group, where we randomly
choose a transaction for each affected transaction. As n (the number of affected
transactions) is low for the Allinvain and Betfloor theft, we increase n in the
control group to 112. Transactions of the control groups are drawn from the
same block of the blacklisted transaction to ensure comparability. (Finding
the right sampling and bootstrapping approach for this purpose is deferred to
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Table 2. Predictors for thefts and control groups

Allinvain Bitfloor Linode

Predictor Incident Control Incident Control Incident Control

n 7 112 8 112 82 112
Average 2.7743 1.2664 2.8249 0.3669 1.2715 0.8287
Median 3.2355 1.3573 2.8489 0.4848 1.1491 1.0553
SD 1.1687 1.1495 0.8206 1.0718 1.3929 1.0087
Variance 1.5936 1.3332 0.7695 1.1592 1.9641 1.0265
Peeling Chains 0.2857 0.6639 0.6250 0.3571 0.3415 0.3482
Duration (h) 611 218 68 25 28 93
Coinbase Score 0.1027 0.0575 0.0056 0.0103 0.0181 0.0948

specialized future work.) If there are not enough transactions available, we draw
from nearby blocks. The first four predictors analyze transaction values. Due
to the small number of transactions, very large values may bias the results. We
therefore log-transform all transaction values. The other predictors are calibrated
as follows. For peeling chains, we look if a transaction comes from a peeling chain
with a minimum length of 6 transactions. To measure the portion of coinbase
transactions, we use the formula stated above. However, we reduce the depth i
from 10 to 8 in order to increase performance.

The results (cf. Table 2) reflect our previous observation that these three thefts
constitute a very special case of theft: they affect long-term user or intermediaries
of the Bitcoin system, who have a large amount of bitcoins available, in parts
presumably from own mining activity. The average and median transaction size
in the control group is always smaller than in the incident set. There is not
only heterogeneity between the particular incident and control groups, but also
between the members of both incident and control groups. As a result, without
better and more general data, we are currently not in a position to derive an
adequate set of predictors for a risk scoring model with acceptable predictive
power.

5 Market Implications

In this section we discuss how markets are affected by a regime that strictly
enforces blacklists of transaction prefixes. We assume that some (imperfect) pre-
diction models for spending risk are available, either based on public information
or using proprietary information against a small fee.

5.1 1 BTC 6= 1 BTC

Bitcoins are not alike. Each transaction is a descendant of a unique transaction
history, which is readily available in the public block chain. Therefore, markets
participants can, in principle, scrutinize the history and become selective in which
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transactions they accept; or, with more granularity, how much they value it. The
fact that most participants do not differentiate for the time being is hard to
justify with economic rationality. A necessary consequence of differentiation is
that market prices reflect the information encoded in the transaction history.
Dealing with bitcoins of two kinds (e. g., black and white, under the poison policy)
may be manageable, essentially at the cost of lower liquidity in both market
segments.2 Pricing every history individually poses new challenges to the design
of market mechanisms, for example at exchanges; but it also affects every small
merchant who accepts bitcoins in exchange for goods or services.

As price differences reflect spending risk, we may follow the model of credit
markets and introduce intermediaries who publish commonly accepted risk ratings
of all unspent transactions. This comes with two issues. First, transaction rating
agencies are a new kind of intermediaries that need to be paid. Second, the fact
that people must rely on them conflicts with the idea of decentralization. If we try
to decentralize ratings to resolve these issues (for example by trivial replication),
the rating model must be confined to public information, or use non-trivial
homomorphic encryption. Both options raise new questions. For example, can
we generate meaningful risk ratings based on public information with public
algorithms and still remain game-proof? Game-proofness is an important property
that discourages whitewashing of transaction histories. If one could bounce
transactions between own accounts to predictably increase their value, everybody
would do it, resulting in a choked up network and block chain.

The credit rating analogy has limits. Here is one important difference: conven-
tional credit ratings (allegedly) have an information advantage. They aggregate
private information that is not readily available to all market participants. In the
absence of better information, market participants rely on ratings as common
proxy. If market participants had access to the disaggregated information—
machine-readable and at no cost, like for Bitcoin transactions—some would prefer
to aggregate the information using customized models. And it would be naive
to assume that buyers and sellers agree on the same model, let alone on its
parameters. The multitude of private valuation functions calls into question the
conventional order book approach followed by popular Bitcoin exchanges. Instead,
we need new efficient mechanisms that reveal and match market participants’
private valuations of all transactions on a marketplace.

One thing that is conceivable under the haircut policy is risk pooling, using
insurance markets and CoinJoin [5] as models: risk-averse bitcoin owners can
reduce the variance of their spending risk by forming large transactions with many
others, thereby distributing the impact of bad transactions equally. Of course,
such schemes require coordination effort and they are vulnerable to adverse
selection as parties who know that they possess dubious transactions have higher
incentives to participate in the pool. This is a known issue of insurance markets.

2 Intentionally “colored” coins have been proposed to deal with virtual goods of different
value using Bitcoin as an infrastructure [29].
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5.2 YouMoney or Bloodcoin ?

Taking the uniqueness and identifiability of Bitcoin transactions beyond the
question of pricing offers interesting new insights. Precious metals or official fiat
currencies are designed as homogeneous goods. This ensures fungibility: quantities
are exchangeable and divisible, a precondition to fulfill the monetary function
as unit of account. Bitcoin transactions, by contrast, are heterogeneous goods,
differentiated on a quality dimension. The valuation of this quality is subject to
individual preferences. This threatens the function as unit of account, as detailed
above in Section 5.1.

On the upside, however, recipients of payments could apply ethical standards
on what money they accept. This is best comparable to the Kimberly Process
Certification Scheme [30], a set of international resolutions established with the
aim to suspend the trade of blood diamonds, which are mined in war zones
and sold to finance arms. One might wonder how well certain industries fared
if the money they accept could be traced back with the ease offered by Bitcoin.
Although market participants still use Bitcoin like a fungible good, being more
selective in what one accepts stands to reason. At least those who have a brand
or reputation to lose have every reasons to be afraid of negative publicity linking
their profits to violence, with evidence publicly accessible in the block chain.

More generally, the public transaction history turns Bitcoin into personalized
money. Because the origin of a transaction matters for spending and reputation,
accepting bitcoins from one party implies a trust relationship from the payee to the
payer. This trust must be established and signaled outside the Bitcoin protocol,
for example by linking Bitcoin identifiers to reputation or social networking
systems. Like the rating analogy above, this is another interesting feature where
Bitcoin markets resemble credit markets more than foreign exchange markets:
Bitcoin recipients take over the sender’s spending risk in a similar vain as creditors
bear their debtors’ credit risk. In rough circumstances, a recipient of Bitcoin
transactions may even ask for a security to cover potential losses. So at second
sight, Bitcoin is not so dissimilar to systems of decentralized debt obligations,
like iOwe [19].

This collection of unfinished thoughts indicates that understanding the full
implications of perfectly and publicly traceable payments remains a major task
for interdisciplinary research.

5.3 Alternatives

What can we do about it? In a decentralized system with a public global state,
the only way to make cryptographic tokens homogeneous, and the virtual good
they encode fungible, is to make transaction histories untraceable. Zerocoin [23]
promises this option. Other solutions involve hierarchical structures of fast and
anonymous cryptographic cash [12, 11] issued by competitive intermediaries and
backed with a slower and less anonymous cryptographic reserve currency, such as
Bitcoin. However, all these options make it harder to fight crime by following the
money. Ideally, we would like to see compromises like systems offering practically
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untraceable transactions for small amounts; and the computational effort needed
to trace entities decreases gently as the amounts involved grow. This turns
the access to transaction histories from a global binary property to a variable
transaction cost, again with implications for all market participants. At the time
of writing, we do not know a technical solution for this set of requirements. We
conjecture that it will be hard to realize when identities are cheap.

The economics of adoption are crucial in this context [9]. All conceivable
alternatives require coordinated effort to switch from Bitcoin to the new regime.
This revolution is hard to achieve against vested interests. Blacklists, by contrast,
are evolutionary. They can emerge without changing the core system and thus
are hardly avoidable if Bitcoin remains relevant.

6 Future Work

Directions for future work include observing blacklisting practices in the Bitcoin
ecosystem, collecting data for more incidents, and finding better tailored predictors
to estimate and eventually validate a risk scoring model.

For simplicity, we have assumed that one blacklist is obeyed globally. In
practice, synchronizing this blacklist is another problem that is prone to race
conditions. Moreover, as blacklists are enforced by national law enforcement
agencies, it is likely that the world will see at least one blacklist per country. So
the spending risk also depends on the spending conventions. Despite people say
the Internet has no borders, the would-be Internet currency becomes as messy as
international trade.

Note that the authors do not approve or disapprove blacklisting of Bitcoin
transactions. Our mission is to reason about the consequences of forseeable
developments. A then relevant topic completely out of the scope of this work is to
explore how the governance of blacklists can be put under decentralized control.
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